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• Statistical Circuit Modeling



Summary of Results

Structure Nominal

Resistance

Standard 

Deviation

Normalized 

Standard

Deviation

R RN

RRnSer nR nRN

RR

1
R

N

R

Rn


R

N

R

R



3
2

1
RR

n


N

R

R

1
Rn

Par nR
NR

n

Ser 2R

Par 2R

Ser 4R

Par 4R

Par/Ser 4R

2RN

4RN

NR

2

NR

4

RN

RR2

RR

8



RR2

RR

8



RR

2



RR

2
NR



RR

2
NR



RR

2
NR



RR

2
NR



RR

2
NR



Review from previous  lecture:



Consider a  resistor of width W and length L
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Consider now the normalized resistance
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It follows that 

The term on the right in [ ] is the ratio of two process parameters so define 

the process parameter AR by the expression REF
R
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AR is more convenient to use than both σREF and R□N

Will term AR the “Pelgrom parameter” (though Pelgrom only presented results for MOS devices)

Review from previous  lecture:

Note σR is dependent on resistance value

Note σR/RN is not dependent on resistance value
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Amplifier Gain Accuracy Review from previous  lecture:

θ is the gain error



Amplifier Gain Accuracy

Many different ways to achieve a given gain with a given resistor area
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Which will have the best yield?

Review from previous  lecture:



String DAC Statistical Performance

Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian
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Consider INLk= VOUT(k) – VFIT (k)

0 ≤ k ≤  N-1

• INL is of considerable interest

• INL=Max(|INLk|),    0<k<N-1

• INL is difficult to characterize analytically so will focus on INLk



String DAC Statistical Performance
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String DAC Statistical Performance

If we do a Taylor’s series expansion of the reciprocal of the 

denominator and eliminate second-order and higher terms it follows 

that 

Note that INKk is a zero-mean multivariate  Gaussian distribution
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String DAC Statistical Performance

Since the index in the sum does not appear in the arguments, this simplifies to

Note there is a nice closed-form expression for the INLk for a string DAC !!
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Since the resistors are identically distributed and the coefficients are not a 

function of the index j, it follows that 
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String DAC Statistical Performance

INLk assumes a maximum variance at mid-code
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String DAC Statistical Performance

How about statistics for the INL?

and closed form solutions do not exist

INL is not zero-mean and not Gaussian



Current Steering DAC Statistical Characterization

Assume unary current source array and define I0=0
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Current Steering DAC Statistical Characterization
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Current Steering DAC Statistical Characterization

j NOM RjI =I +IModel the current sources as
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It can be shown that the nominal part cancels, thus  

1 1

1

1

1 1

k N
Rk Rk

k

i i kNOM NOM

I IN k k
INL

N I N I

− −

= =

   − − 
= −    

− −    
 

This is a sum of uncorrelated random variables
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Current Steering DAC Statistical Characterization

j N RjI =I +I

The variance of INKk can be readily calculated

2 21 1
2 2 2

1

1

1 1k Rk Rk

NOM NOM

k N

INL I I

i i kI I

N k k

N N
  

− −

= =

− −   
= +   

− −   
 

( ) ( )
2 2

2 21
1

1 1k Rk

NOM

INL I

I

N k k
k N k

N N
 

 − −   
= − + −    

− −     

( )( )
( )

2 2
1

1k Rk

NOM

INL I

I

k N k

N
 

− −
=

−

This simplifies to

S0

I0=0

S1

I1

SN-1

IN-1

R

n
VOUT

XIN

VRFF

S2

I2

N

Binary to 

Thermometer 

Decoder



Current Steering DAC Statistical Characterization

j N RjI =I +I

As for the string DAC, the maximum INLk

occurs near mid-code at about  k=N/2 thus 

And, as for the string DAC, the INL is an order statistic and thus a 

closed-form solution does not exist
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Current Steering DAC Statistical Characterization

( )
0=

= − b
n

OUT i j

j

V R b I

The structure looks about the same as for the unary structure but now the 
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Current Steering DAC Statistical Characterization
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Current Steering DAC Statistical Characterization
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Current Steering DAC Statistical Characterization

This can be expressed as
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Current Steering DAC Statistical Characterization

It can be shown that the maximum INLb occurs at 

b=<011…..11111>  or  b=<100….0000>

Substituting    b=<1000….000>
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Current Steering DAC Statistical Characterization
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Note this is the same result as obtained for the unary DAC

But closed form expressions do not exist for the INL of this DAC since the 

INL is an order statistic  
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Current Steering DAC Statistical Characterization
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Note this is the same result as obtained for the unary DAC
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Since INL is the max |INKk|  is  INLMAX the same as INL?

MAXINL

No!

Since               is about the same for the Unary weighted structure and 

the Binary weighted structure, is the performance of both about the 

same?
No,  DNL is much different !

Will                                also hold if we do not bundle unary current 

sources to obtain the binary current sources? 
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Instead of bundling unary current sources, could we simply take multiple 

outputs on a current mirror to generate the binary weighted currents ?  

This could be done in such a way that the area increases linearly rather 

than geometrically with the number of bits – much like with an R-2R DAC 

Yes – but!

No,  σ will be much different !



Statistical Modeling of Current Sources

VGS

ID

IX

Simple Square-Law MOSFET Model Usually Adequate for static Statistical 

Modeling

Assumption:  Layout used to marginalize gradient effects, contact 

resistance and drain/source resistance neglected

( )
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μC W
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Random Variables:  {µ, COX, VTH, W, L }

From previous analysis, need: D

DN

I

I



Thus ID is a random variable



Statistical Modeling of Current Sources

VGS

ID

IX( )
2OX

D GS TH

μC W
I = V -V

2L

Random Variables:  {µ, COX, VTH, W, L } Thus ID is a random variable

Will assume {µ, COX, VTH, W, L } are uncorrelated

This is not true : TOX is a random variable that affects both VTH and COX

• This assumption is widely used and popularized by Pelgrom

• It is also implicit in the statistical model available in simulators such as SPECTRE

• Statistical information about TOX often not available

• Drenen and McAndrew (NXP) published several papers that point out limitations

• Would be better to model physical parameters rather than model parameters but 

more complicated

• Statistical analysis tools at NXP probably have this right but not widely available

• Assumption simplifies analysis considerably

• Error from neglecting correlation is usually quite small but don’t know how small



Statistical Modeling of Current Sources
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Model parameters are position dependent
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µ(x,y),   COX(x,y),   VTH (x,y)



Statistical Modeling of Current Sources
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Model parameters are position dependent

Assume that model parameters can be modeled as a 

position-weighted integral

Reasonably good assumption if current density is constant 
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Statistical Modeling of Current Sources
Assume that model parameters can be modeled as a position-weighted integral

As seen for resistors, this model is not good if current density is not constant
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If VTH1=1V,  VTH2=2V

VTHEQ=1.5V

But reasonably good assumption if current density is constant 

Note dramatically different current densities
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Model parameters characterized by following equations
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Neglecting random part of W and L which are usually less important



Statistical Modeling of Current Sources
( )( )
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Since the random variables are small, we can do a Taylor’s series expansion 

and truncate after first-order terms to obtain 

This appears to be a highly nonlinear function of random variables !!

This is a linearization of ID in the random variables µR, COXR, and VTHR
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Will now linearize the relationship between ID and the random variables

Could easily include LR and WR but usually not important unless lots of perimeter
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It will be assumed  that
(will discuss assumption later)  
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Define

Thus
Often only Aβ is available

where Aµ,ACox,AVT0 are Pelgrom

process parameters
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• Standard deviation decreases with 

• Large VEB reduces standard deviation

• Operating near cutoff results in large mismatch

• Often threshold voltage variations dominate mismatch
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A=WLGate area:
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Stay Safe and Stay Healthy !



End of Lecture 10


