EE 505 Lecture 10

- Statistical Circuit Modeling

Review from previous lecture:

Summary of Results

Structure	Nominal Resistance	Standard Deviation	Normalized Standard Deviation
R	R_{N}	$\sigma_{\mathrm{R}_{\mathrm{R}}}$	$\sigma_{\frac{R_{R}}{R_{N}}}$
Ser nR	$n R_{N}$	$\sqrt{n} \sigma_{R_{R}}$	$\frac{1}{\sqrt{n}} \sigma_{\frac{R_{R}}{R_{N}}}$
Par nR	$\frac{R_{N}}{n}$	$\frac{1}{n^{3 / 2}} \sigma_{R_{R}}$	$\frac{1}{\sqrt{n}} \sigma_{\frac{R_{R}}{R_{N}}}$
Ser 2R Par 2R	$\begin{gathered} 2 R_{N} \\ \frac{R_{N}}{2} \end{gathered}$	$\begin{gathered} \sqrt{2} \sigma_{R_{R}} \\ \sigma_{R_{R}} / \sqrt{8} \end{gathered}$	$\begin{aligned} & \sigma_{\frac{R_{R}}{}}^{R_{n}} / \sqrt{2} \\ & \sigma_{\frac{R_{R}}{}} \\ & \frac{R_{n}}{R_{n}} / \sqrt{2} \\ & \hline \end{aligned}$
Ser 4R Par 4R	$4 R_{N}$ $\frac{R_{N}}{4}$	$\begin{gathered} 2 \sigma_{R_{R}} \\ \sigma_{R_{R}} / 8 \end{gathered}$	$\begin{aligned} & \sigma_{R_{R}}^{R_{R}} \\ & \sigma_{R_{R}} \\ & \sigma_{R_{R}}^{R_{N}} \\ & \sigma_{0} / 2 / 2 \end{aligned}$
Par/Ser 4R	R_{N}	$\sigma_{R_{R}} / 2$	$\frac{R_{R}}{R_{N}} / 2$

Consider a resistor of width W and length L

$$
\sigma_{R}^{2}=\left(\frac{L}{W}\right)^{2} \cdot \frac{\sigma_{R E F}^{2}}{W \cdot L}=\sigma_{R E F}^{2} \cdot \frac{L}{W^{3}}
$$

It follows that

$$
\sigma_{R}^{R_{N}}=\left(\frac{1}{R_{N}^{2}}\right)\left(\sigma_{R E F}^{2} \frac{L}{W^{3}}\right)=\left(\frac{W^{2}}{R_{\mathrm{DN}}^{2} L^{2}}\right)\left(\sigma_{R E F}^{2} \frac{L}{W^{3}}\right)=\left(\frac{1}{W}\right)\left[\frac{\sigma_{R E F}^{2}}{R_{\mathrm{DN}}^{2}}\right]
$$

The term on the right in [] is the ratio of two process parameters so define the process parameter A_{R} by the expression $A_{R}=\frac{\sigma_{R E F}}{R_{\mathrm{ON}}}$

A_{R} is more convenient to use than both $\sigma_{R E F}$ and $R_{\square N}$

Thus the normalized resistance is given by the expression

$$
\sigma_{\frac{R}{R_{N}}}^{2}=\frac{A_{R}^{2}}{W L}=\frac{A_{R}^{2}}{A}
$$

Note $\sigma_{\text {R/RN }}$ is not dependent on resistance value
Will term A_{R} the "Pelgrom parameter" (though Pelgrom only presented results for MOS devices)

$$
\begin{aligned}
& \theta=K-\left(K+\sum_{i=1}^{k} \frac{R_{R_{2}}}{R_{0}}-\frac{k R_{R_{11}}}{R_{0}}+\bigotimes^{0}\right)^{0} \\
& \theta \simeq \sum_{i=1}^{K} \frac{R_{R_{2 i}}}{R_{0}}-k \frac{R_{R_{11}}}{R_{0}} \\
& \sigma_{\theta}^{2}=k \partial_{\frac{R_{R}}{R_{N}}}^{2}+k^{2} \partial_{\frac{R_{R}}{R_{N}}}^{2} \\
& \sigma_{\theta}=\dot{\sigma}_{\frac{R_{R}}{R_{N}}} \sqrt{K+k^{2}}
\end{aligned}
$$

θ is the gain error

Note: K is simply tho nominal magnitude of the de gain

If $k=1 \quad \sigma_{\theta}=\sigma_{\frac{R_{R}}{R_{N}}} \sqrt{2}$

$$
\begin{aligned}
K=10 \quad \sigma_{\theta} & =\sigma_{\frac{R_{R}}{R_{N}}} \sqrt{110} \\
\sigma_{\theta} & =10.5 \sigma_{\frac{R_{R}}{R_{N}}}
\end{aligned}
$$

Amplifier Gain Accuracy

Many different ways to achieve a given gain with a given resistor area

Which will have the best yield?

String DAC Statistical Performance

$$
0 \leq k \leq N-1
$$

- INL is of considerable interest
- $\operatorname{INL}=\operatorname{Max}\left(| | \mathrm{NL}_{\mathrm{k}} \mid\right), \quad 0<\mathrm{k}<\mathrm{N}-1$
- INL is difficult to characterize analytically so will focus on INL_{k}

Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian

$$
\begin{aligned}
& \text { Consider } \mathrm{INL}_{\mathrm{k}}=\mathrm{V}_{\text {OUT }}(\mathrm{k})-\mathrm{V}_{\mathrm{FIT}}(\mathrm{k}) \\
& V_{\text {OUT }}(k)= \begin{cases}0 & k=0 \\
\frac{\sum_{j=1}^{k} R_{j}}{\sum_{j=1}^{N} R_{j}} V_{\text {REF }} & 1 \leq k \leq N-1\end{cases} \\
& V_{F I T}(k)=\frac{\mathrm{k}}{\mathrm{~N}-1} \frac{\sum_{j=1}^{N-1} R_{j}}{\sum_{j=1}^{N} R_{j}} V_{R E F} \quad 0 \leq \mathrm{k} \leq \mathrm{N}-1
\end{aligned}
$$

String DAC Statistical Performance

$$
\begin{gathered}
I N L_{k}=\frac{\left(\frac{\sum_{j=1}^{k} R_{j}}{\sum_{j=1}^{N} R_{j}}-\frac{k}{N-1} \sum_{j=1}^{N-1} R_{j}\right.}{\frac{V_{R E F}}{2^{n}}} R^{N} V_{R E F} \\
I N L_{k}=\frac{\sum_{j=1}^{k} R_{j}-\frac{k}{N-1} \sum_{j=1}^{N-1} R_{j}}{\sum_{j=1}^{N} R_{j}} 2^{n} \quad 1 \leq k \leq N-1 \\
I N L_{k}=\frac{\sum_{j=1}^{k} R_{j}-\frac{k}{N-1} \sum_{j=1}^{k} R_{j}-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{j}}{\sum_{j=1}^{N} R_{j}} 2^{n} \quad 1 \leq k \leq N-1 \\
I N L_{k}=\frac{\sum_{j=1}^{k} R_{j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{j}}{\sum_{j=1}^{N} R_{j}} 2^{n} \quad 1 \leq k \leq N-1
\end{gathered}
$$

Let $\quad R_{j}=R_{\text {NOM }}+R_{R j}$

String DAC Statistical Performance

$$
\begin{gathered}
I N L_{k}=\frac{\left[\sum_{j=1}^{k} R_{N O M}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{N O M}\right]+\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}}{\sum_{j=1}^{N} R_{N O M}+\sum_{j=1}^{N} R_{R j}} 2^{n} \quad 1 \leq k \leq N-1 \\
I N L_{k}=\frac{R_{N O M}\left[k\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1}(N-k-1)\right]+\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}}{N R_{N O M}+\sum_{i=1}^{N} R_{R j}} 2^{n} \quad 1 \leq k \leq N-1 \\
I N L_{k}=\frac{2^{n}}{N R_{N O M}} \frac{\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}}{1+\frac{1}{N R_{N O M}} \sum_{j=1}^{N} R_{R j}} \quad 1 \leq k \leq N-1
\end{gathered}
$$

If we do a Taylor's series expansion of the reciprocal of the denominator and eliminate second-order and higher terms it follows that

$$
\begin{gathered}
I N L_{k}=\frac{1}{R_{N O M}}\left[\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}\right]\left[1-\frac{1}{N R_{N O M}} \sum_{j=1}^{N} R_{R j}\right] \quad 1 \leq k \leq N-1 \\
I N L_{k}=\frac{1}{R_{N O M}}\left[\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}\right] \quad 1 \leq k \leq N-1
\end{gathered}
$$

Note that $\mathrm{INK}_{\mathrm{k}}$ is a zero-mean multivariate Gaussian distribution

String DAC Statistical Performance

$$
I N L_{k}=\frac{1}{R_{N O M}}\left[\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}\right] \quad 1 \leq k \leq N-1
$$

Since the resistors are identically distributed and the coefficients are not a function of the index j, it follows that

$$
\sigma_{\text {INLk }}^{2}=\sigma_{\frac{R_{R}}{R_{\text {NoM }}}}^{2}\left[\sum_{j=1}^{k}\left(1-\frac{k}{N-1}\right)^{2}+\sum_{j=k+1}^{N-1}\left(\frac{k}{N-1}\right)^{2}\right] \quad 1 \leq k \leq N-1
$$

Since the index in the sum does not appear in the arguments, this simplifies to

$$
\sigma_{\text {INLk }}=\sigma_{\frac{R_{R}}{R_{\text {Ron }}}} \sqrt{\frac{(N-1-k) k}{N-1}} \quad 1 \leq k \leq N-1
$$

Note there is a nice closed-form expression for the INL_{k} for a string DAC !!

String DAC Statistical Performance
$I \mathrm{NL}_{\mathrm{k}}$ assumes a maximum variance at mid-code

String DAC Statistical Performance

How about statistics for the INL?

$$
\begin{gathered}
I N L=\max _{k}\left|I N L_{k}\right| \\
I N L_{k}=\sum_{i=1}^{k-1} \frac{R_{R_{i}}}{R_{N}}\left(\frac{N-k}{N-1}\right)-\sum_{i=}^{N-1} \frac{R_{R_{i}}}{R_{N}}\left(\frac{k-1}{N-1}\right)
\end{gathered}
$$

INL is an order statistic

Distribution functions for order statistics are very complicated and closed form solutions do not exist INL is not zero-mean and not Gaussian

Current Steering DAC Statistical Characterization

Assume unary current source array and define $\mathrm{I}_{0}=0$

$$
V_{\text {OUT }}(k)=-R \sum_{j=0}^{k-1} I_{j} \quad 1 \leq \mathrm{k} \leq \mathrm{N}
$$

For notational convenience will normalize by -R to obtain

$$
I_{\text {OUTX }}(k)=\sum_{i=0}^{k-1} I_{i} \quad 1 \leq \mathrm{k} \leq \mathrm{N}
$$

Assume current sources are random variables with identical distributions

$$
\mathrm{I}_{\mathrm{j}}=\mathrm{I}_{\mathrm{NOM}}+\mathrm{I}_{\mathrm{Rj}} \quad \mathrm{I}_{\mathrm{Rj}} \propto \mathrm{~N}\left(0, \sigma_{\mathrm{I}}\right)
$$

Current Steering DAC Statistical Characterization

$$
\begin{gathered}
I N L_{k}(k)=\frac{\sum_{j=0}^{k-1} I_{j}-I_{F I T}(k)}{I_{N O M}} \quad 1 \leq \mathrm{k} \leq \mathrm{N} \\
I_{F I T}(k)=\frac{k-1}{N-1}\left(\sum_{j=1}^{N-1} I_{j}\right) \quad 1 \leq \mathrm{k} \leq \mathrm{N} \\
I N L_{k}(k)=\frac{\sum_{j=1}^{k-1} I_{j}-\frac{k-1}{N-1}\left(\sum_{j=1}^{N-1} I_{j}\right)}{I_{N O M}} \\
I N L_{k}=\frac{\sum_{i=1}^{k-1}\left(1-\frac{k-1}{N-1}\right) I_{i}-\frac{k-1}{N-1} \sum_{i=k}^{N-1} I_{i}}{I_{N O M}}
\end{gathered}
$$

Current Steering DAC Statistical Characterization

$$
I N L_{k}=\frac{\sum_{i=1}^{k-1}\left(1-\frac{k-1}{N-1}\right) I_{i}-\frac{k-1}{N-1} \sum_{i=k}^{N-1} I_{i}}{I_{N O M}}
$$

Model the current sources as $\quad \mathrm{I}_{\mathrm{j}}=\mathrm{I}_{\mathrm{NOM}}+\mathrm{I}_{\mathrm{Rj}}$

$$
I N L_{k}=\frac{\sum_{i=1}^{k-1}\left(1-\frac{k-1}{N-1}\right)\left(I_{N O M}+I_{R k}\right)-\frac{k-1}{N-1} \sum_{i=k}^{N-1}\left(I_{N O M}+I_{R k}\right)}{I_{N O M}}
$$

It can be shown that the nominal part cancels, thus

$$
I N L_{k}=\sum_{i=1}^{k-1}\left(\frac{N-k}{N-1}\right)\left(\frac{I_{R k}}{I_{N O M}}\right)-\frac{k-1}{N-1} \sum_{i=k}^{N-1}\left(\frac{I_{R k}}{I_{\text {NOM }}}\right)
$$

This is a sum of uncorrelated random variables

Current Steering DAC Statistical Characterization

The variance of $\mathrm{I}_{\mathrm{NKk}}$ can be readily calculated

$$
\begin{aligned}
& \sigma_{I N L_{k}}^{2}=\sum_{i=1}^{k-1}\left(\frac{N-k}{N-1}\right)^{2} \sigma_{\frac{I_{R k}}{I_{N O M}}}^{2}+\left(\frac{k-1}{N-1}\right)^{2} \sum_{i=k}^{N-1} \sigma_{\frac{I_{R k}}{I_{N O M}}}^{2} \\
& \sigma_{I N L_{k}}^{2}=\left[(k-1)\left(\frac{N-k}{N-1}\right)^{2}+(N-k)\left(\frac{k-1}{N-1}\right)^{2}\right] \sigma_{\frac{I_{R K}}{I_{\text {NOM }}}}^{2}
\end{aligned}
$$

This simplifies to

$$
\sigma_{I N L_{k}}^{2}=\frac{(k-1)(N-k)}{(N-1)} \sigma_{\frac{I_{R k}}{I_{N O M}}}^{2}
$$

Current Steering DAC Statistical Characterization

As for the string DAC, the maximum NL_{k} occurs near mid-code at about $k=N / 2$ thus

$$
\sigma_{I N L_{k-M A X}}=\sigma_{\frac{I_{R}}{I_{\text {NOM }}}}\left[\frac{\sqrt{N}}{2}\right]
$$

$$
\mathrm{I}_{\mathrm{j}}=\mathrm{I}_{\mathrm{N}}+\mathrm{I}_{\mathrm{Rj}}
$$

And, as for the string DAC, the INL is an order statistic and thus a closed-form solution does not exist

Current Steering DAC Statistical Characterization

The structure looks about the same as for the unary structure but now the current sources are binary weighted

$$
V_{\text {OUT }}(\mathbf{b})=-R \sum_{j=0}^{n} b_{i} I_{j} \quad \mathbf{b}=\left\langle b_{n}, b_{n-1} \ldots b_{1}\right\rangle
$$

Define the decimal equivalent of b, k_{b}, by

$$
k_{\mathrm{b}}=\sum_{j=1}^{n} b_{j} 2^{j-1}
$$

For notational convenience will normalize by -R to obtain

$$
I_{\text {OUTX }}(\mathbf{b})=\sum_{i=1}^{n} b_{i} I_{i} \quad \text { for }\langle 0,0, \ldots 0\rangle \leq \mathbf{b} \leq\langle 1,1, \ldots 1\rangle
$$

Current Steering DAC Statistical Characterization
Binary Weighted

$$
I_{F / T}(\mathbf{b})=\frac{k_{b}}{N-1} \sum_{i=1}^{n} I_{i} \quad 0 \leq \mathrm{k}_{\mathrm{b}} \leq \mathrm{N}-1
$$

Thus

$$
I N L_{\mathbf{k}}(\mathbf{b})=\frac{I_{\text {OUTX }}(\mathbf{b})-I_{F I T}(\mathbf{b})}{I_{L S B X}} \quad \begin{aligned}
& \text { for }<0,0, \ldots 0>\leq \mathbf{b} \leq<1,1, \ldots 1> \\
& \text { or equivalently for } 0 \leq k_{b} \leq N-1
\end{aligned}
$$

$$
I N L_{\mathrm{k}}(\mathrm{~b})=\frac{\sum_{i=1}^{n} b_{i} I_{i}-\frac{k_{\mathrm{b}}}{N-1} \sum_{i=1}^{n} I_{i}}{I_{L S B X}}
$$

Current Steering DAC Statistical Characterization

Binary Weighted
Assume bundled current sources are comprised of unary current sources from same distribution

$$
I_{m}=\sum_{k=2^{m-1}}^{2^{m}-1} I_{G k} \quad I_{G k}=I_{N O M}+I_{R G K}
$$

Thus

$$
I N L_{\mathrm{b}}=\frac{\sum_{i=1}^{n}\left(b_{i}\left(\sum_{k=2^{l-1}}^{2^{i}-1} I_{G K}\right)\right)-\frac{k_{\mathrm{b}}}{N-1} \sum_{i=1}^{2^{n}-1} I_{G i}}{I_{\text {LSBX }}}
$$

Substituting the values for I_{GK}, it can be shown that the nominal parts cancel thus

$$
I N L_{\mathrm{b}}=\frac{\sum_{i=1}^{n}\left(b_{i}\left(\sum_{k=2^{l-1}}^{2^{i}-1} I_{R G K}\right)\right)-\frac{k_{\mathrm{b}}}{N-1} \sum_{i=1}^{2^{n}-1} I_{R G i}}{I_{L S B X}}
$$

Current Steering DAC Statistical Characterization
 Binary Weighted

This can be expressed as

$$
I N L_{\mathrm{b}}=\sum_{i=1}^{n} \sum_{k=2^{2^{-1}}}^{2^{i}-1}\left[b_{i}-\frac{k_{\mathrm{b}}}{N-1}\right] \frac{I_{R G K}}{I_{L S B X}}
$$

This is now a sum of uncorrelated random variables, thus

$$
\sigma_{I L_{\mathrm{b}}}=\sqrt{\sum_{i=1}^{n} \sum_{k=2^{-1}}^{2^{\prime}-1}\left[b_{i}-\frac{k_{\mathrm{b}}}{N-1}\right]^{2}} \cdot \sigma_{\frac{I_{\mathrm{R} G \mathrm{C}}}{L_{\mathrm{LSBX}}}}
$$

This reduces to

$$
\sigma_{I L_{\mathrm{b}}}=\sqrt{\sum_{i=1}^{n} 2^{i-1}\left[b_{i}-\frac{k_{\mathrm{b}}}{N-1}\right]^{2}} \bullet \sigma_{\frac{I_{\mathrm{PQK}}}{I_{\mathrm{LSBX}}}}
$$

Current Steering DAC Statistical Characterization
 Binary Weighted

It can be shown that the maximum $\mathrm{INL}_{\mathrm{b}}$ occurs at $\mathrm{b}=<011 \ldots . .11111>$ or $\mathrm{b}=<100 \ldots . .0000>$

Substituting $b=<1000 \ldots . .000>$

$$
\sigma_{I N L_{b=c|000.0\rangle}}=\sqrt{2^{n-1}\left[1-\frac{N / 2}{N-1}\right]^{2}+\sum_{i=1}^{n-1} 2^{i-1}\left[\frac{N / 2}{N-1}\right]^{2}} \bullet \sigma_{\frac{I_{\text {ICQB }}}{l_{L S B X}}}
$$

This simplifies to

$$
\sigma_{\left.I L_{B=E}=000.0\right)}=\sqrt{2^{n-1}\left[1-\frac{N / 2}{N-1}\right]^{2}+\sum_{i=1}^{n-1} 2^{i-1}\left[\frac{N / 2}{N-1}\right]^{2}} \bullet \sigma_{\frac{I_{\text {feck }}}{I_{L S E X}}}
$$

This can be expressed as

$$
\sigma_{\left.I N L_{\mathrm{b}}=<1000.0\right\rangle}=\sqrt{\frac{N}{2}\left[1-\frac{N / 2}{N-1}\right]^{2}+\left(\frac{N}{2}-1\right)\left[\frac{N / 2}{N-1}\right]^{2}} \bullet \sigma_{\frac{I_{\mathrm{PROK}}}{I_{\text {LSBX }}}}
$$

Current Steering DAC Statistical Characterization

Binary Weighted

$$
\begin{aligned}
& \sigma_{N_{W_{\text {bexsono.ss }}}}=\sqrt{\frac{N}{2}\left[1-\frac{N / 2}{N-1}\right]^{2}+\left(\frac{N}{2}-1\right)\left[\frac{N / 2}{N-1}\right]^{2}} \cdot \sigma_{\frac{\sigma_{\text {face }}}{\substack{\text { csex }}}} \\
& \sigma_{I L_{\text {max }}} \cong \sigma_{I L_{b=<t, 0, \ldots>}} \cong \frac{\sqrt{N}}{2} \sigma_{\frac{I_{R G}}{I_{\text {LSBX }}}}
\end{aligned}
$$

Note this is the same result as obtained for the unary DAC

But closed form expressions do not exist for the INL of this DAC since the INL is an order statistic

Still need to obtain

$$
\sigma_{\frac{I_{R G}}{I_{L B B X}}}
$$

Current Steering DAC Statistical Characterization

Unary Weighted and Binary Weighted

$$
\sigma_{I N L_{\mathrm{MAX}}} \cong \sigma_{I N L_{\mathrm{b}=<1,0, \ldots 0>}} \cong \frac{\sqrt{N}}{2} \sigma_{\frac{I_{R G}}{I_{L S B X}}}
$$

Note this is the same result as obtained for the unary DAC
Since $I N L$ is the max $\left|I N K_{k}\right|$ is $I N L_{\text {MAX }}$ the same as $I N L$?

Since $\sigma_{I N L_{\text {MAX }}}$ is about the same for the Unary weighted structure and the Binary weighted structure, is the performance of both about the same?

No, DNL is much different!
Instead of bundling unary current sources, could we simply take multiple outputs on a current mirror to generate the binary weighted currents ? This could be done in such a way that the area increases linearly rather than geometrically with the number of bits - much like with an R-2R DAC
Yes - but!

Will $\sigma_{I N L_{\operatorname{Lax}}} \cong \frac{\sqrt{N}}{2} \sigma_{\frac{l_{\mathrm{RG}}}{l_{\operatorname{LsBX}}}}$ also hold if we do not bundle unary current sources to obtain the binary current sources?

No, σ will be much different!

Statistical Modeling of Current Sources

Simple Square-Law MOSFET Model Usually Adequate for static Statistical Modeling

Assumption: Layout used to marginalize gradient effects, contact resistance and drain/source resistance neglected

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}
$$

Random Variables: $\left\{\mu, C_{O X}, V_{T H}, W, L\right\} \quad$ Thus I_{D} is a random variable

From previous analysis, need:

Statistical Modeling of Current Sources

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H}\right)^{2} \quad \mathrm{I}_{\mathrm{X}} \underbrace{\longrightarrow}_{\mathrm{V}_{G S}} \stackrel{\square}{\square}
$$

Random Variables: $\left\{\mu, C_{O X}, V_{T H}, W, L\right\} \quad$ Thus I_{D} is a random variable
Will assume $\left\{\mu, \mathrm{C}_{\mathrm{OX}}, \mathrm{V}_{\mathrm{TH}}, \mathrm{W}, \mathrm{L}\right\}$ are uncorrelated
This is not true : T_{OX} is a random variable that affects both V_{TH} and C_{OX}

- This assumption is widely used and popularized by Pelgrom
- It is also implicit in the statistical model available in simulators such as SPECTRE
- Statistical information about T_{Ox} often not available
- Drenen and McAndrew (NXP) published several papers that point out limitations
- Would be better to model physical parameters rather than model parameters but more complicated
- Statistical analysis tools at NXP probably have this right but not widely available
- Assumption simplifies analysis considerably
- Error from neglecting correlation is usually quite small but don't know how small

Statistical Modeling of Current Sources

Model parameters are position dependent
$\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{Ox}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H}\right)^{2}$
$\mu(x, y), C_{o x}(x, y), V_{T H}(x, y)$

Statistical Modeling of Current Sources

Model parameters are position dependent

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H}\right)^{2}
$$

Assume that model parameters can be modeled as a position-weighted integral

$$
\begin{aligned}
& \mu=\frac{\int_{A} \mu(x, y) d x d y}{A} \\
& C_{O X}=\frac{\int_{A} C_{O x}(x, y) d x d y}{A} \\
& V_{T H}=\frac{\int_{A} V_{T H}(x, y) d x d y}{A}
\end{aligned}
$$

Reasonably good assumption if current density is constant

Statistical Modeling of Current Sources

Assume that model parameters can be modeled as a position-weighted integral
As seen for resistors, this model is not good if current density is not constant

$$
\begin{gathered}
\mathrm{I}_{\mathrm{D}} \simeq \frac{\mu \mathrm{C}_{\mathrm{Ox}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH1}}\right)^{2} \\
\mathrm{~V}_{\mathrm{THEQ}}=\frac{\int_{\mathrm{A}} \mathrm{~V}_{\mathrm{TH}}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}}{\mathrm{~A}} \simeq \frac{\mathrm{~V}_{\mathrm{TH} 1}+\mathrm{V}_{\mathrm{TH} 2}}{2} \\
\text { If } \mathrm{V}_{\mathrm{TH} 1}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TH} 2}=2 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{THEQ}}=1.5 \mathrm{~V}
\end{gathered}
$$

Note dramatically different current densities
But reasonably good assumption if current density is constant

Statistical Modeling of Current Sources

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}
$$

Model parameters characterized by following equations

$$
\begin{aligned}
& \mu=\mu_{N}+\mu_{R} \\
& V_{T H}=V_{T H N}+V_{T H R} \\
& C_{O X}=C_{O X N}+C_{O X R} \\
& L=L_{N}+L_{R} \\
& W=W_{N}+W_{R}
\end{aligned}
$$

Neglecting random part of W and L which are usually less important

$$
\mathrm{I}_{\mathrm{D}}=\frac{\left(\mu_{N}+\mu_{R}\right)\left(\mathrm{C}_{O X N}+C_{O X R}\right) \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}-\mathrm{V}_{T H R}\right)^{2}
$$

Statistical Modeling of Current Sources

$$
\mathrm{I}_{0}=\frac{\left(\mu_{N}+\mu_{R}\right)\left(\mathrm{C}_{\text {OXN }}+C_{O X R}\right) \mathrm{W}}{2 L}\left(\mathrm{~V}_{G S}-V_{T H N}-V_{T H R}\right)^{2}
$$

This appears to be a highly nonlinear function of random variables !!
Will now linearize the relationship between I_{D} and the random variables Since the random variables are small, we can do a Taylor's series expansion and truncate after first-order terms to obtain
$\mathrm{I}_{\mathrm{D}} \cong \frac{\mu_{N} \mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H N}\right)^{2}+\mu_{R} \frac{\mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H N}\right)^{2}+C_{O X R} \frac{\mu_{N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}-\mathrm{V}_{T H R} \frac{\mu_{N} \mathrm{C}_{O X N} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)$
This is a linearization of I_{D} in the random variables $\mu_{R}, C_{O X R}$, and $V_{T H R}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{DR}} \cong \mu_{R} \frac{\mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H N}\right)^{2}+C_{O X R} \frac{\mu_{N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}-\mathrm{V}_{T H R} \frac{\mu_{N} \mathrm{C}_{O X N} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right) \\
& \frac{\mathrm{I}_{\mathrm{DR}}}{\mathrm{I}_{\mathrm{DN}}} \cong \mu_{R} \frac{\frac{\mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}}{\mathrm{I}_{\mathrm{DN}}}+C_{O X R} \frac{\frac{\mu_{N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}}{\mathrm{I}_{\mathrm{DN}}}-\mathrm{V}_{T H R} \frac{\frac{\mu_{N} \mathrm{C}_{O X N} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)}{\mathrm{I}_{\mathrm{DN}}}
\end{aligned}
$$

Could easily include L_{R} and W_{R} but usually not important unless lots of perimeter

Statistical Modeling of Current Sources

$$
\begin{aligned}
& \frac{\mathrm{I}_{\mathrm{DR}}}{\mathrm{I}_{\mathrm{DN}}} \cong \mu_{R} \frac{\frac{\mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}}{\mathrm{I}_{\mathrm{DN}}}+C_{O X R} \frac{\frac{\mu_{N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H N}\right)^{2}}{\mathrm{I}_{\mathrm{DN}}}-\mathrm{V}_{T H R} \frac{\frac{\mu_{N} \mathrm{C}_{\mathrm{OXN}} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)}{\mathrm{I}_{\mathrm{DN}}} \\
& \mathrm{I}_{\mathrm{DN}}=\frac{\mu_{N} \mathrm{C}_{\mathrm{OXN}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{\text {THN }}\right)^{2} \\
& \frac{\mathrm{I}_{\mathrm{DR}}}{\mathrm{I}_{\mathrm{DN}}} \cong \mu_{R} \frac{\frac{\mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T H N}\right)^{2}}{\frac{\mu_{N} \mathrm{C}_{\mathrm{OXN}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-V_{T H N}\right)^{2}}+C_{\text {OXR }} \frac{\frac{\mu_{N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}}{\frac{\mu_{N} \mathrm{C}_{\text {OXN }} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}}-\mathrm{V}_{T H R} \frac{\frac{\mu_{N} \mathrm{C}_{\text {OXN }} \mathrm{W}}{\mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)}{\frac{\mu_{N} \mathrm{C}_{O X N} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)^{2}} \\
& \frac{\mathrm{I}_{\mathrm{DR}}}{\mathrm{I}_{\mathrm{DN}}} \cong \frac{\mu_{R}}{\mu_{N}}+\frac{C_{\mathrm{OXR}}}{\mathrm{C}_{\mathrm{OXN}}}-\frac{2 \mathrm{~V}_{T H R}}{\left(\mathrm{~V}_{G S}-\mathrm{V}_{T H N}\right)}
\end{aligned}
$$

Thus

Statistical Modeling of Current Sources

It will be assumed that (will discuss assumption later)

$$
\begin{aligned}
& \sigma_{\frac{\mu_{R}}{2}}^{\mu_{N}}=\frac{A_{\mu}^{2}}{W L} \\
& \sigma_{\frac{C_{\text {oxe }}}{2}}^{C_{\text {CXXV }}}=\frac{A_{\text {Cox }}^{2}}{W L} \\
& \sigma_{V_{\text {THR }}^{2}}^{2}=\frac{A_{V T 0}^{2}}{W L}
\end{aligned}
$$

where $\mathrm{A}_{\mu}, \mathrm{A}_{\text {cox }}, \mathrm{A}_{\mathrm{VT0}}$ are Pelgrom process parameters

Define

$$
\sigma_{\frac{\mathrm{DP}}{\mathrm{bo}}}=\frac{1}{\sqrt{W L}} \sqrt{A_{\mu}^{2}+A_{C O X}^{2}+\frac{4}{V_{E B}^{2}} A_{V T 0}^{2}}
$$

$$
A_{\beta}=\sqrt{A_{\mu}^{2}+A_{c o x}^{2}}
$$

Thus

$$
\sigma_{\frac{\mathrm{bg}}{\mathrm{bN}}}=\frac{1}{\sqrt{W L}} \sqrt{A_{\beta}^{2}+\frac{4}{V_{E B}^{2}} A_{V T \mathrm{O}}^{2}} \quad \text { Often only } \mathrm{A}_{\beta} \text { is available }
$$

Statistical Modeling of Current Sources

$$
\sigma_{\frac{\mathrm{CoR}}{\mathrm{OD}}}=\frac{1}{\sqrt{W L}} \sqrt{A_{\beta}^{2}+\frac{4}{V_{E B}^{2}} A_{V T 0}^{2}}
$$

Gate area: $\quad \mathrm{A}=\mathrm{WL}$

- Standard deviation decreases with $\sqrt{\mathrm{A}}$
- Large $\mathrm{V}_{\text {EB }}$ reduces standard deviation
- Operating near cutoff results in large mismatch
- Often threshold voltage variations dominate mismatch

$$
\sigma_{\frac{\mathrm{I}_{\mathrm{DR}}}{\mathrm{DN}}} \cong \frac{2}{V_{\mathrm{EB}} \sqrt{W L}} A_{V T 0}
$$

Stay Safe and Stay Healthy !

End of Lecture 10

